
GEOSS/Asian Water Cycle Initiative

[integration of earth observation data] + [capacity development] programme

1. Objectives

- To develop an information system of systems for promoting the implementation of integrated water resources management (IWRM).
- To make a bridge between global data and local information for sound decision making.
- To shift from research activities and achievements to operational use for contributing to societal benefits.

2. Targeted River Basin Criteria

- 1) Importance of the basin from the point of view of the socio-economic benefit area and hydrological sciences
- 2) Minimum requirement of data availability:
- Data type: rainfall, streamflow, weather station data (air temp., wind speed, pressure, humidity)
- Spatial density of observation stations: according to the WMO standard but local specifics to be considered;
- Watershed characteristics information
- 3) Highly expected data:
- Upper air observation is highly recommended
- Near-real time data availability is highly recommended;
- Ground water and water quality data availability for the river basins where those problems should be addressed.

4)Size of the watershed: 100 km2 - 1,000,000 km2

Country	Ba Bu												Mo				Pa			Ph					Uz				18
Reference basin	Me	Se	Sh	Ма	Ма	То	S0	HW	Ch	Ju	На	Se	SE	Sh	Na	ва	GI	Ha :	Sa	Ра	Mal	Ka	NI	Ма	CA	Hu	Th	٦T	29
Basin Desccription																													
Basin Maps	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	0	1	25
Basin Pictures	0	1				1	1	1	1	1	1	0	1	0			1	1	1	1	1	1	1		1	1	1	1	19
River Network Maps	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	28
Soil	0	1				1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1		1		1	1	18
Land Use/Vegetation	0	1			1	1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1		1	1	0	1	19
River Constructions	0	1				1	1	1	1	1	1	0		0						1	1	1	1		1	1	1	1	15
HYDROLOGICAY																													
Streamflow	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	24
Reservoir	1	1				1	1	1	1	1	1	1	1	0			1	1	1	1	1	1	1		1	0	0	0	18
Groundwater Table	1	0										0	1	0			0	0	0	0	0	0	0		1	0	0	0	4
water quality	-	-	-									-	-				-	-		-	-	-	-		-	-	-	-	
SUB-SURFACE																													
Soil Temperature	1	1	1			0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	0	1	1	1	0	1	12
Soil Moisture	ō	i	_			ŏ		_	ŏ	ŏ	ŏ	ŏ	i	ŏ	•	•	ŏ	_	ŏ	ŏ	ō	ō	ŏ	i	i	i		i	8
SURFACE		-	-			-		-		-	-	-	-	-				-	-	-		-	-	-	-	-	<u> </u>	-	
Air Temperature	1	1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	24
Humidity	i	i				- 1	1	1	1	- 1	- 1	- 1	-	1	- 1	-	1	-	1	- 1	1	÷	~	- 1	- 1	1	- 1	-	24
Wind	i	i				- 1	- 1	- 1	-	- 1	- 1	- 1	1	-	- 1	-	4	1	4	- 1	-	4	~	- 1	1	1	- 1	-	24
	i	1				- 1	-	- 1	-	- 1	- 1	1	-	-	- 1	-	4	-	-	- 1	-	4	~	- 1	-	-	- 1		24
Pressure	-					- 1	1	-	-	- 1	-		1	-	+	1	1	1	1	-	1	4		- 1	1	1	÷.	1	
Precipitation	1	1	_			- 1	1	1	1	- 1	-	1	1	1	+	1	-	1	1	1	1	1	1	1	1	1	1	1	26
Snow	0	0				1	1	1	1	1	1	0	1		1	1	1	0	1	0	0	0	0		1	0	0	0	12
Skin Temperature	0	1				0	0	0	0	0	0		1				0	0	0	0	0	0	0	1	0	0	0	0	3
Upward Shortwave	0	1				0	0	0	0	0	0		1				1	1	1	0	0	0	0	1	0	0	1	0	7
Downward Shortwave	0	1				1	0	0	0	0	0		1				1	1	1	0	0	0	0	1	0	0	1	0	8
Upward Longwave	0	1				0	0	0	0	0	0		1				0	0	0	0	0	0	0	1	0	0	1	0	4
Downward Longwave	0	0				0	0	0	0	0	0	1	1				0	0	0	0	0	0	0	1	0	0	1	0	4
Upward PAR	0	0				0	0	0	0	0	0		1				0	0	0	0	0	0	0		0	0	0	0	1
Downward PAR	0	0				0	0	0	0	0	0		0				0	0	0	0	0	0	0		0	0	0	0	0
Net Radiation	1	0				0	0	0	0	0	0	0	1				0	0	0	0	0	0	0	1	0	0	1	0	4
Sensible Heat Flux	0	0				0	0	0	0	0	0	0	1				0	0	0	0	0	0	0	1	0	0	0	0	2
Latent Heat Flux	0	0				0	0	0	0	0	0	0	1				0	0	0	0	0	0	0	1	0	0	0	0	2
Ground Heat Flux	0	0				0	0	0	0	0	0	0	1				0	0	0	0	0	0	0	1	0	0	0	0	2
Momentum Flux	0	0				0	0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0
CO2 Flux	ō	ō				0	0	ō	0	0	ō	-	ō				ō	0	0	0	0	0	0		1	0	ō	ō	ī
Evaporation	ĩ	ō				ĩ	0	ĩ	ī	ĩ	ĩ	1	ō		1	1	ī	ī	1	ō	1	1	ī		ō	1	ĩ	ĩ	19
Vegetation	ō	ŏ				ō	ŏ	ō	ō	ō	ō		ĩ		•		ō	i	ō	ŏ	ō	ō	ō		ŏ	i	i	i	5
Atmosphere		-					-			-	-						-			-		-					·		-
PB L Tower	0	0				0	0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0
Radiosonde	ĩ	ŏ				ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ				ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ		ŏ	ĭ	ĭ	ĭ	5
Radar	i	ĭ	1			ĩ	ň	ŏ	ŏ	ŏ	ŏ	ő	÷				ň	õ	õ	ŏ	ŏ	õ	ŏ	1	ŏ	î	÷	i	ģ
Lidar	ò	ō				6	0	ŏ	ŏ	ŏ	ŏ	0	ò				0	õ	0	ŏ	ŏ	0	ŏ	1	0	6	6	0	ő
Profiler	-	-				~	0	0		-			-				0	~	0	-	-	0	-		0	0	~		-
	0	0					0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0
RASS	0	0				0	0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0

Country	Ba Bu	Ca	Ch	In	ls Ja	Ko	,					La	Мо	My	Ne		Pa			Ph	Sr			Th	Uz	VI				18
Reference basin	Me	Se	Sh	Ма	Ма То) S0	H	N C	h.	lu I				-		Ва	GI	На	Sa	Pa	Ма	Ка	N		AO I		I T	h 1	Tr -	29
Basin Desccription																														
Basin Maps	1	1	1	1	1	1 1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1 1	(0	0	1	25
Basin Pictures	0	1				1	l I	1	1	1	1	0	1	0			1	1	1	1	1	1	1		1		1	1	1	19
River Network Maps	1	1	1	1	1	1	L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	28
Soil	0	1				1	L	1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1		1			1	1	18
Land Use/Vegetation	0	1			1	1	L	1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1		1		1	0	1	19
River Constructions	0	1				1	L	1	1	1	1	0		0						1	1	1	1		1		1	1	1	15
HYDROLOGICAY																														
Streamflow	1	1	1	1		1 1	l	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	(0	0	0	24
Reservoir	1	1				1 1	L	1	1	1	1	1	1	0			1	1	1	1	1	1	1		1		0	0	0	18
Groundwater Table	1	0										0	1	0			0	0	0	0	0	0	0		1	(0	0	0	4
water quality																														
SUB-SURFACE																														
Soil Temperature	1	1	1			0 ()	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	0		1 1		1	0	1	12
Soil Moisture	0	1				0 ()	0	0	0	0	0	1	0			0		0	0	0	0	0	1			1	1	1	8
SURFACE		-	-								-	-					-			-		-	-							
Air Temperature	1	1				1	l	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0		1 1		1	1	1	24
Humidity	1	1				1	L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0				1	1	1	24
Wind	1	1				1	L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0				1	1	1	24
Pressure	1	1				1	L	1	1	1	1		1	1	1	1	1	1	1	1	1	1	0				1	1	1	23
Precipitation	1	1				1	L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	26
Snow	0	0				1	L	1	1	1	1	0	1		1	1	1	0	1	0	0	0	0		1	(0	0	0	12
Skin Temperature	0	1				0 ()	0	0	0	0		1				0	0	0	0	0	0	0		1 (0	0	0	3
Upward Shortwave	0	1				0 ()	0	0	0	0		1				1	1	1	0	0	0	0		1 (0	1	0	7
Downward Shortwave	0	1				1 ()	0	0	0	0		1				1	1	1	0	0	0	0		1 (0	1	0	8
Upward Longwave	0	1				0 ()	0	0	0	0		1				0	0	0	0	0	0	0		1 (0	1	0	4
Downward Longwave	0	0				0 ()	0	0	0	0	1	1				0	0	0	0	0	0	0	1	1 () (0	1	0	4
Upward PAR	0	0)			0 ()	0	0	0	0		1				0	0	0	0	0	0	0		0		0	0	0	1
Downward PAR	0	0)			0 ()	0	0	0	0		0				0	0	0	0	0	0	0				0	0	0	0
Net Radiation	1	0				0 ()	0	0	0	0	0	1				0	0	0	0	0	0	0	1	1 (0	1	0	4
Sensible Heat Flux	0	0				0 ()	0	0	0	0	0	1				0	0	0	0	0	0	0	1	1 (0	0	0	2
Latent Heat Flux	ō	0				0 ()	0	0	0	0	0	1				0	0	0	0	0	0	0	1	1 (0	0	0	2
Ground Heat Flux	ō	0)			0 ()	0	Ō	ō	0	0	1				0	0	0	0	0	0	0	i	1 (1	0	ō	0	2
Momentum Flux	ō	0				0 (5	ō	ō	ō	0	Ō	ō				0	0	0	0	0	ō	0		(1	0	ō	ō	ō
CO2 Flux	ō	0				0 (5	ō	ō	ō	ō	_	ō				ō	0	0	0	0	ō	0)	1		0	ō	ō	ī
Evaporation	1	0				1 ()	1	1	1	ī	1	ō		1	1	1	1	1	0	1	1	1				1	1	ĩ	19
Vegetation	ō	0				0 (5	ō	ō	ō	ō	_	ī		-		ō	ī	ō	0	0	ō	0)	Ċ		1	ĩ	ī	5
Atmosphere		-							-								-		-	-	-		-					_		
PB L Tower	0	0			0) (()	0	0	0	0	0				0	0	0	0	0	0	0		0	0		0	0	0
Radiosonde	1	ō) 0)	0	0	ō	0	1				0	0	0	0	ō	Ō	ō		0	1		1	1	5
Radar	i	ĩ	1		i	0		0	0	0	0	0	1				0	ō	0	0	0	0	ō	1	Ō	i		1	ĩ	9
Lidar	ō	ō	_) 0)	ō	0	0	0	ō				0	0	ō	0	0	ō	ō		0	0		0	ō	ō
Profiler	õ	õ			č	0		5	õ	õ	õ	õ	õ				õ	ō	õ	ō	õ	õ	ō		ō	ō		õ	õ	õ
RASS	õ	õ			č	-			õ	õ	õ	õ	õ				õ	õ	õ	ō	õ	õ	ō		ō			õ	õ	õ
	-							-	-	-	-	-	-				-	-	-	-	-	-	-		-	-		-	-	

 $\bigcirc \bigcirc \bigcirc \bigcirc$

3. Data Interoperability

- Meta-data design
- Meta-data registration
- Data quality check and archive
- Data format unification
- Data integration function
- Distributed- and Centralized- data distribution

4. User Interface

- Data request: global/regional/local, observed/modeled, natural science/socio-economic
- Function request: data integration, information fusion, analysis, prediction, dissemination

5.Data Policy

1) Release of Data in Compliance with WMO Resolution 40 (CG-XII) and WMO Resolution 25 (CG-XIII)

2) No Commercial Use or Exploitation

3) No Data Transfer to Third Parties

4) Timing for Release of AWCI River Basin Data from the CDA Archive category 1 - standard data - data release after 6 months category 2 - special data - data release after 15 months

Streamflow data - (i) operational - category 1 data; (ii) research site maintained by university, through a project - category 2 data; also remote sites need to be included in category 2 data
Suggestion: to have 3 categories of data - the third category - real time or near-real time data (radiosonde data from operational sites)

5) Acknowledgement and Citation

6) Co-operation between AWCI Data Users and AWCI River Basin Principal Investigators (PIs)

7) Co-Authorship for AWCI River Basin Principal Investigators (PIs)

8) AWCI Publication Library

6. Timeline

2007 Pre-phase: survey of capabilities

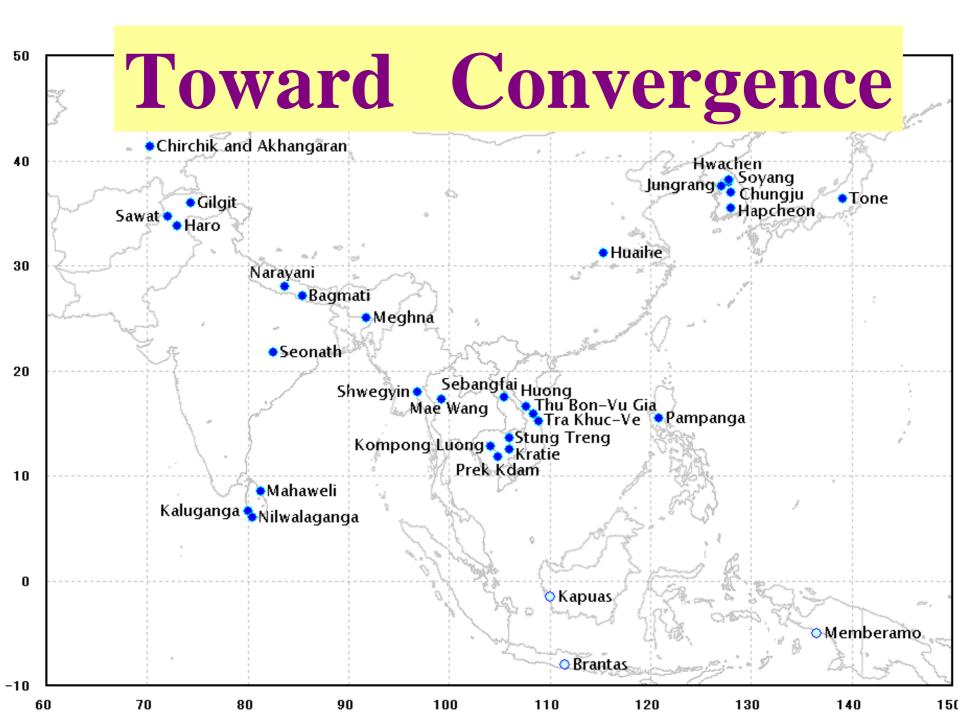
Completion of Implementation Plan

Input to the Task Sheets

Test Archive: Metadata, Observed Data during CEOP Phase 1

A Basin in Each Countr?

2008-2011


Data Archive 2007-2010

Demonstration Implementation

2009 -2010

Preparation for shifting

from more-research to more-operational phase

Dr. Jose Achache (GEO) Dr. Andrew Matthews (APN)

A

8

Dr. Ishida

Ms. Misawa

VA

Dr. Matsumoto

Dr. Yamanaka

UT

Free to take S 0 19. Ms KoyamaMs Petra K Ms Goda

Prime International

Ms Sekiguchi, Tomuro,

Ms Katoh, Shimizu

Mr Masuyama, Toyoshima, Nishiura

Convergence

29 Countries and 176 participant

Reserved

Reserved

Peienet

Reserved