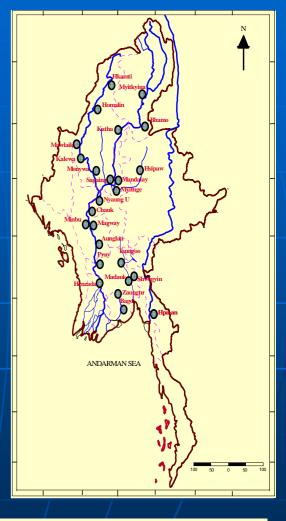

2nd Asian Water Cycle Symposium (AWCS)



9 January 2007

Rivers in Myanmar

River forecasting stations in Myanmar

WATERSHED MANAGEMENT ACTIVITIES

- Only about 6% of the total water resources of 870 million acre feet per annum are being utilized annually
- Numerous irrigation facilities have been implemented
- After 1988, the government put forward continuous efforts in the constructions of dams and reservoirs throughout the country by utilizing large capital investment
- Completed between 1988-1989 to 2006 numbered 193 new dams
- Establishment of 298 river pump stations and 999 of village dams were made for rural water supply and agricultural use

Natural disasters

- -Meteorological -Hydrological – -Geological
- River floods
- Flash floods
- Inundations
- Very low River water levels
- Very low ground water levels
- Heavy rain spells
- Droughts

River Basin Description

🏶 Location :	17° 30' to 18° 30' (North latitude)
	96° 45' to 97° 10' (East Longitude)
Catchment outlet:	17° 48' (N. Lat), 96° 48'(E. Long)
Catchment Area :	1747 km ²
MOLTS Point 1 :	17° 52′, 96° 52′
鑗 MOLTS Pt. 1 el ⁿ :	12 m (above mean sea level)

Available Data at Shwegyin Basin

- 42 miles long from North to South
- 19 miles wide from east to west
- only one Met. And Hydro. Station
- Rainfall, water level, water temperature, discharge, sediment discharge, evaporation, wind direction, wind speed, humidity

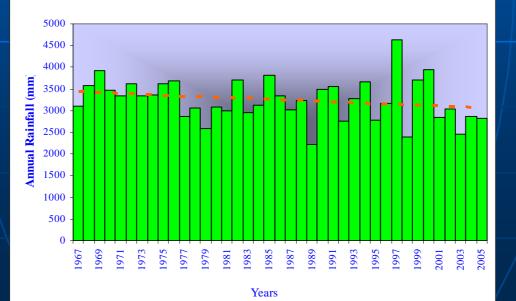
Monthly Distribution of Flood in Shwegyin

	Percentage of Flood					_		
Station	June	July	Aug	Sep	Oct	Frequency	Period	
Shwegyin	3	21	74	3	0	34	1966-2005	

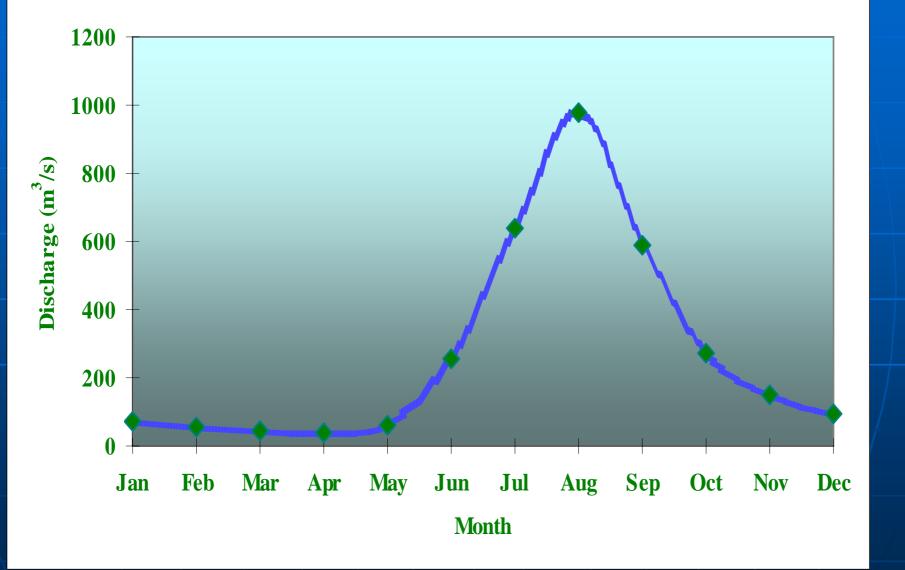
Needs related to water resources management in the basin

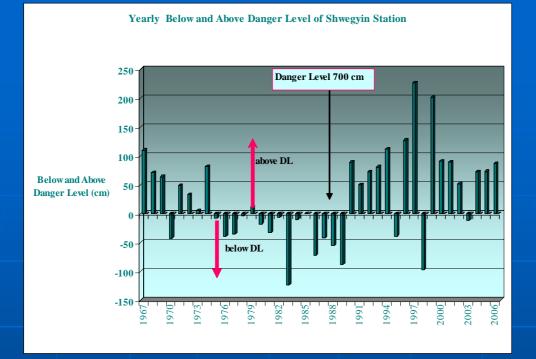

- To install two telemetering stations and one receiving station in Shwegyin river basin, in order to get early warning system
- To develop forecasting technique for flash flood
- To display the hydrological behavior of watersheds after estimation the geomorphologic parameters from digital elevation model
- To develop accurate flood inundation maps based on flows the hydrologic model using all available data including GIS data sources

Impact of Geomorphologic Parameters on Watershed Hydrology

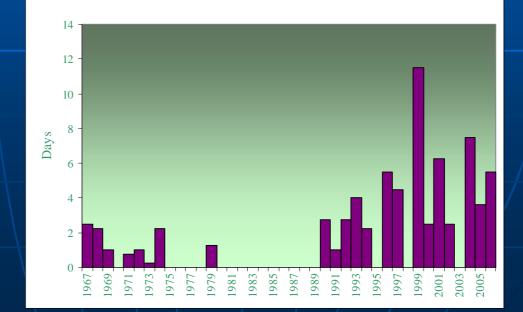

Geomorphologic	Governing Hydrological		
Parameters	behavior		
Relief ratio, relative relief,	Affect the time of concentration		
elongation ratio and average	of the watershed, runoff rate		
slope	and sediment loss		
Stream length ratios, bifurcation ratio, drainage density and drainage factor	Governs the peak runoff rate and the sediment loss		
Shape factor	Defines the basin elongation, affects the time of concentration and the peak runoff rate and translation time of runoff reaching the outlet		

Severe Flood Record (Since 1966)

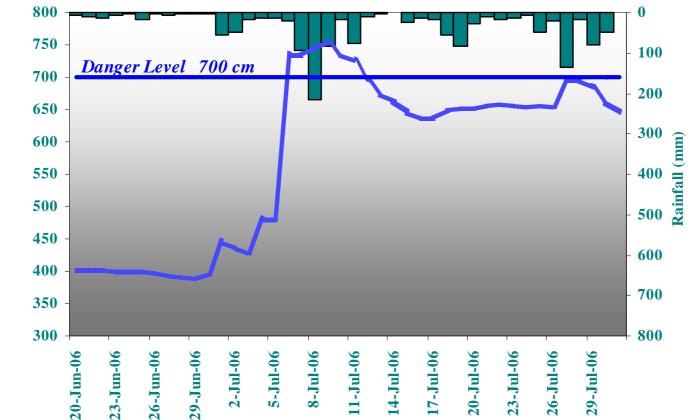

Years	Flood Peak (cm)	Flood Duration above DL	Record
1997	927	4 days 12 hours	1 st Max.
1999	902	11 days 12 hours	2 nd Max.
1996	827	5 days 12 hours	3 rd Max.

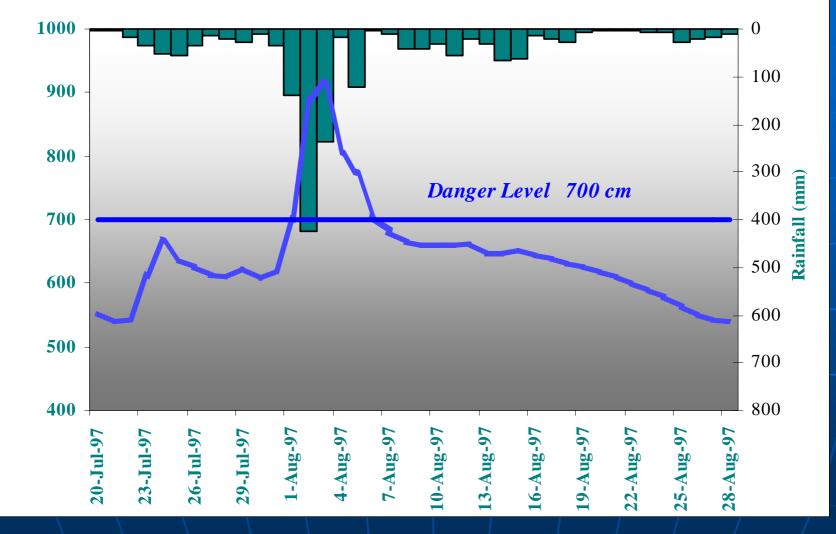


Comparison of Annual Rainfall of Shwegyin Station



Monthly Mean Discharge of Shwegyin Station (1967-2005)

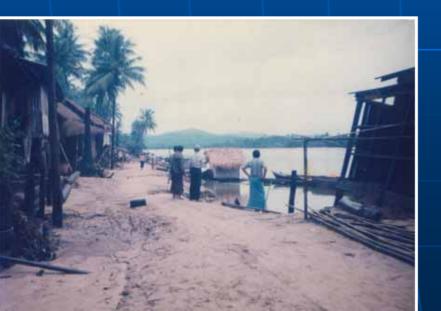



Flash Flood in Shwegyin River on July 2006

Water Level Change within 12 hours : 239 cm

Water Level (cm)

Flash Flood in Shwegyin River on Aug 1997



Water Level Change within 24 hours : 174 cm

Water Level (cm)

Damage cause by flash flood at Shwegyin in 1997

- The flood water cover 6 wards out of 8 wards in Shwegyin
- 4/5 of the areas which inundated
- **504** houses washed away
- 6336 acres of paddy field were affected

Pre-phase Preparation

Statistical Characteristics of Original Series

Parameters	Mean	SD	Cv	Cs	Ck	R1
Annual Max. Discharge (m ³ /s)	2085	717.3	0.34	1.01	4.68	0.16
Annual Max. Rainfall (mm)	151	56.0	0.37	3.16	17.43	-0.11

Outlier Test

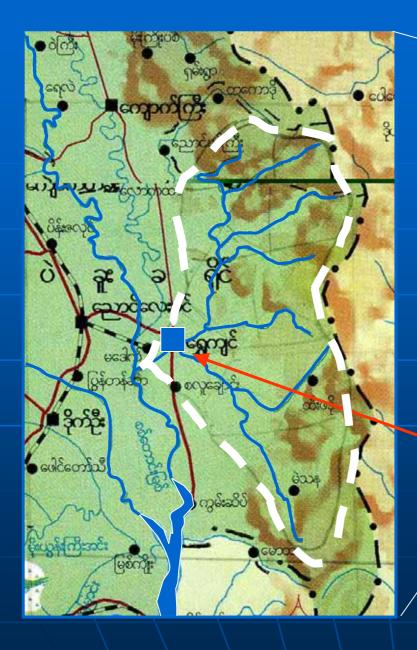
	Com	puted	Obse	erved	Remark
Annual Peak	Q _H	Q _L	Q _H	Q	
Flow (m3/s)	4816	809	4388	952	
Annual Max Rainfall(mm)	317	66	424	80	High Outlier

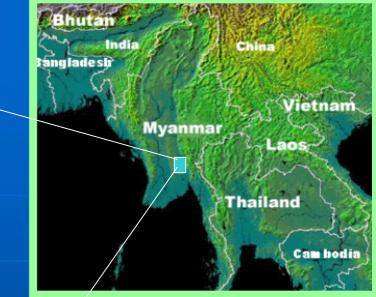
The Result of Randomness and

Trend Analysis

Parameters	Turning Point Test	Kendal's Rank Correlation	Mann Kendal Test	Spear Rho Test	Auto correlation
Annual Max. Discharge	-1.43	0.21	0.21	0.53	1.18
Annual Max. Rainfall	0.91	0.54	0.58	0.60	-0.52

Parameters	Median Crossin g Test	Run Test	WW Test	Run above and below	Ran Von Neuma n	Von Neuman	Rank Difference	Hurt Coeff:
Annual Max. Discharge	-2.27	-2.63	1.22	-0.004	-1.71	-1.06	-2.56	0.82
Annual Max. Rainfall	0.65	0.33	-0.68	0.0004	1.33	0.63	1.22	0.59


Most of tests gave the identical results


Draft Implementation Plan

- To develop forecasting technique for flash flood
- To develop the design flood and design rainfall for difference return periods and probable maximum precipitation (PMP) of one to three days
- To compare the estimated design flood by unit hydrograph approach with the flood frequency analysis
- To display the hydrological behavior of watersheds after estimation the geomorphologic parameters from digital elevation model
- To develop accurate flood inundation maps based on flows the hydrologic model using all available data including GIS data sources

Thanks for your kind attention

Shwegyin Station

North latitude : 17° 30' to 18° 30' East Longitude : 96° 45' to 97° 10'